1.

Diagram NOT accurately drawn
The diagram shows a sector of a circle, centre O.
The radius of the circle is 13 cm .
The angle of the sector is 150°.
Calculate the area of the sector.
Give your answer correct to 3 significant figures.

$$
\frac{150}{360} \times \pi(13)^{2}=221.2204827
$$

221 cm^{2}
(Total 2 marks)
2.

Diagram NOT accurately drawn
The diagram shows a sector of a circle, centre O, radius 10 cm .
The arc length of the sector is 15 cm .
Calculate the area of the sector.

$$
\begin{aligned}
\text { arc length } & =\frac{\theta}{360} \times 2 \pi r \\
15 & =\frac{\theta}{360} \times 2(\pi)(10) \\
\theta & =85.94366927
\end{aligned}
$$

(Total 4 marks)
3.

Diagram NOT accurately drawn
$O A B$ is a sector of a circle, centre O.
Angle $A O B=60^{\circ}$.
$O A=O B=12 \mathrm{~cm}$.
Work out the length of the arc $A B$.
Give your answer in terms of π.

$$
\begin{aligned}
& \frac{60}{360} \times 2(\pi)(12) \\
& =4 \pi
\end{aligned}
$$

4.

Diagram NOT accurately drawn
The diagram shows a sector of a circle, centre O.
The radius of the circle is 6 cm .
Angle $A O B=120^{\circ}$.
Work out the perimeter of the sector.
Give your answer in terms of π in its simplest form.

$$
\begin{aligned}
\text { Arc Length } & =\frac{120}{360} \times 2(\pi)(6) \\
& =4 \pi
\end{aligned}
$$

$$
\text { Perimeter }=4 \pi+12
$$

$$
\frac{4 \pi+12}{\text { (Total } 3 \text { marks) }}
$$

5.

Diagram NOT accurately drawn
The diagram shows an equilateral triangle $A B C$ with sides of length 6 cm .
P is the midpoint of $A B$.
Q is the midpoint of $A C$.
$A P Q$ is a sector of a circle, centre A.

Calculate the area of the shaded region.
Give your answer correct to 3 significant figures.
Shaded Area $=$ Triangle Area - Sector Area

$$
\begin{aligned}
A & =\frac{1}{2}(6)(6) \sin (60) \\
& =9 \sqrt{3}(15.58845727) \\
& =\frac{60}{360} \times \pi(3)^{2} \\
& =\frac{3}{2} \pi
\end{aligned}
$$

Shaded Area $=9 \sqrt{3}-\frac{3}{2} \pi \quad 10.9$

$$
\begin{equation*}
=10.87606829 \tag{Total4marks}
\end{equation*}
$$

6.

Diagram NOT accurately drawn

The diagram shows a sector $O A B C$ of a circle with centre O.
$O A=O C=10.4 \mathrm{~cm}$.
Angle $A O C=120^{\circ}$.
(a) Calculate the length of the arc $A B C$ of the sector.

Give your answer correct to 3 significant figures.

$$
\begin{align*}
& \frac{120}{360} \times 2(\pi)(10.4) \\
& =21.78170906 \ldots \ldots21 .8 \tag{3}
\end{align*}
$$

(b) Calculate the area of the shaded segment $A B C$.

Give your answer correct to 3 significant figures.
Area of Sector - Area of triangle.

$$
\begin{align*}
\frac{120}{360} & =\pi(10.4)^{2}-\frac{1}{2}(10.4)(10.4) \sin (120) \\
& =66.4302333 \quad \tag{4}
\end{align*}
$$

7. The diagram shows a sector of a circle with centre O. The radius of the circle is 8 cm .
$P R S$ is an arc of the circle. $P S$ is a chord of the circle.
Angle $P O S=40^{\circ}$

Diagram NOT accurately drawn

Calculate the area of the shaded segment. Give your answer correct to 3 significant figures.

$$
\begin{gathered}
\text { Sector Area - Triangle Area. } \\
\frac{40}{360} \times \pi(8)^{2}-\frac{1}{2}(8)(8) \sin (40) \\
=1.771010916
\end{gathered}
$$

8.

Diagram NO'T accurately drawn
$A B C$ is an arc of a circle centre O with radius 80 m .
$A C$ is a chord of the circle.
Angle $A O C=35^{\circ}$.
Calculate the area of the shaded region. Give your answer correct to 3 significant figures.

$$
\begin{aligned}
& \frac{35}{360} \times \pi(80)^{2}-\frac{1}{2}(80)(80) \sin (35) \\
& =119.3241659
\end{aligned}
$$

